WP2: Triple Store Benchmarking

Dieter De Witte - iMinds Data Science Lab
Laurens De Vocht - iMinds Data Science Lab

1 Introduction

In this project iMinds will help Europeana with the selection of a triple store to host their
semantic data. Prior to this project Ontotext GraphDB was used for this purpose but the
choice was made to experiment an open source license solution.

The number of RDF solutions to choose from is vast and the optimal choice heavily depends
on the properties of the data and the type of queries which will make up the workload.

Based on the data of Europeana and a set of queries iMinds will run a benchmark which will
motivate the selection of a triple store which will be used to support the future Semantic Web
activities of Europeana.

2 Technical Requirements

2.1 Requirements for both parties

Requirements for iMinds:

e Infrastructure for benchmarking:
o 1 server per triple store
o multiple client for executing benchmarks
o administrator rights on all nodes

e Europeana dataset and queries
o dataset available on all server nodes
o dataset available as RDF in turtle format or N-triples format

Requirements for Europeana’s triple store selection:

Triple stores should be Open Source (community edition is not sufficient)
Triple store must handle dataset of 2+ billion triples

Support for reasoning capabilities is not a requirement

Support for horizontal scalability is not a requirement (single server)

https://www.w3.org/TeamSubmission/turtle/
https://www.w3.org/TR/n-triples/

e Dataset dynamics: update frequency is currently on a monthly basis and need not be
higher than once per day in the future. Higher update frequencies are not a
requirement.

e The triple store should be well maintained and sufficiently mature to run in a
production environment.

2.2 Meeting the requirements

e Infrastructure requirements:

O

June 17: Servers for triple stores and benchmark clients were made available
by Christos.

e Dataset availability:

O

June 17: First version of the data was in GraphDB proprietary data format
which cannot be loaded in the suggested triple formats

June 21: Data uploaded to all servers, format is RDF/XML. Issue raised to
convert data to turtle or n-triples as agreed.

June 23: Data converted to turtle, uploaded to all servers until the next day.

e June 14: Triple store selection was approved at the initial meeting

2.3 Tasks and planning
Worktype Person | MD | Description Status
Meeting Dieter 0.75 | Initial meeting & Done.
preparation,
hardware
suggestions
Meeting Dieter 0.25 | Follow up Done.

Development

Dieter 0.5 | Query Validation Done.

Development

Dieter 2.5 | Virtuoso Setup & Done.
Benchmarking

Development

Laurens 3 Blazegraph Setup | Done. Some files dropped due
& Benchmarking to parse exceptions.

Development | Dieter 2.5 | Fuseki Setup, HDT from XML used, HDT
benchmarking and | from Turtle too many parse

HDT creation errors
Development | Dieter / Neo4dJ Setup Canceled due to re-scoping
for handling data quality
issues.
Development | Dieter / Neo4J Canceled due to re-scoping
Benchmarking for handling data quality
issues.
Development | Dieter 1 Benchmark clients | Done.
Analysis Dieter 1 A jupyter notebook | Done.

where results can
be plugged in and

visualized
Project Dieter 0.5 Done.
Management
Reporting Dieter 1 Done.
Total 13 | Triple store Done.

benchmarking

3 Triple Store selection procedure

3.1 Triple stores under consideration

Triple stores selected for this benchmark study must be:
e Well maintained to support Enterprise operation
e Have a high adoption to ascertain support over a long period of time
e Have an open source license

One website which measures the adoption/popularity of databases is DB-engines. It has a
section on RDF stores. The most popular open source RDF database in this list is Virtuoso
(#2), followed by Jena (#3) and Sesame (#4). GraphDB (#12) and BlazeGraph (#14) have a
lower rank which might be partially attributed to their rebranding. Neo4J is the most popular
Graph Database but uses Cypher and not SPARQL as its native query language.

Triple Store Details Comments

https://github.com/europeana/europeana-triplestore-setups/blob/master/postprocessing/EuropeanaPostprocessing.ipynb
http://db-engines.com/en/

S2RDF

Research by Freiburg on
translating SPARQL
engines to Apache Spark
for easier integration and
horizontal scalability

Paper link

Europeana: Request not
to use Apache Spark to
avoid introducing a new
platform to Europeana's
existing Cloud
infrastructure. (requires
Cloudera Hadoop CDH)

Virtuoso Open Source

Most popular entreprise
triple store, generally
performs best in
benchmarks.

Open Link

Both Open Source as a
closed source version with
enterprise support
available.

Very scalable: both scale
out and high availability

Blazegraph

Graph Database with
RDF/SPARQL support.

Blazegraph

Open Source, no license
fees.

Used by Wikidata.

Both scale out and high
availability. For parallel
setup enterprise support is
recommended.

Jena Fuseki with HDT

Fuseki is a Jena-based
SPARQL-over-HTTP
solution. Can run with
TDB as a backend or on
top of HDT files.

Fuseki website

HDT website

Not a scalable solution but
due to its ability to run on
compressed HDT format a
good candidate for big
datasets and interesting
point of comparison with
LDF.

GraphDB

Entreprise RDF Graph
Database with many
features.

GraphDB

Not chosen since it's
proprietary and will
definitely not be chosen.

Neo4J with RDF plug-in

Graph database excelling
in path queries.

Neo4J

Unmanaged extension

Potential issue: plugin is
not maintained by Neo4J

RDF4J

Formerly Sesame.
Currently in Beta

In literature Sesame never
shows up as the most
performant store.

Table 1: Triple stores considered for Europeana. Stores marked in green were selected for benchmarking.
Neo4J was selected as the 4th store with a lower priority.

http://dbis.informatik.uni-freiburg.de/forschung/projekte/DiPoS/S2RDF.html
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
https://www.blazegraph.com/product/
https://jena.apache.org/documentation/serving_data/
http://www.rdfhdt.org/manual-of-hdt-integration-with-jena/
http://ontotext.com/products/graphdb/
https://neo4j.com/
https://github.com/niclashoyer/neo4j-sparql-extension

3.2 Benchmark Results in Scientific Literature

In scientific literature the use of artificial benchmarks is very common. The most cited ones
are:

LUBM: Lehigh University Benchmark|[1]

BSBM: the Berlin SPARQL Benchmark[2]

DBPBM: DBPedia Benchmark[3]

SP2Bench: SPARQL performance Benchmark[4]

In a more recent study about the diversity of SPARQL benchmark suites by University of
Waterloo[5] it was shown that previous benchmarks are not sufficiently diverse in terms of
query properties nor the selectivity properties of the data. They provide a suite - Watdiv -
which offers both queries and data which addresses these issues. Results from Watdiv will
be used to further motivate the choice of Spargl endpoint for Europeana.

Currently 2 European projects are focusing on trying to provide industry-level benchmarks
for testing triple stores:

e | DBC: Linked Data Benchmark Council

e HOBBIT: Holistic Benchmarking of Big Linked Data

In a recent benchmark study (Benchmark Toyama 2012[6]) a set of triple stores was
compared with Virtuoso, GraphDB (OWLIM) and Blazegraph (Bigdata) being the most
promising ones. For the biggest datasets - Uniprot and DDBJ - both in the order of 1-10
billion triples Virtuoso showed the best performance.

Performance benchmarks only evaluate stores along one dimension. Therefore it is equally
interesting to evaluate stores based on the features they support. This exercise was done
before by Wikimedia. They added weights to a set of features which allowed them to create
a score and a ranking of different RDF management solutions.

e Blazegraph comes out on top of this evaluation with a score of 1597.

e Virtuoso has 159 points, but a lot of values are missing and therefore counted as
zero. Apart from that we are somewhat sceptical about some of the scores. For
example ‘maturity of distributed version’ is much higher in Virtuoso but both Virtuoso
and Blazegraph get a 1, ability to maintain uptime of Virtuoso gets a zero since it's an
enterprise feature. Blazegraph on the other hand also recommends enterprise
support for certain features although in theory they can be used without a license, in
practice it'’s very hard to do so. As a conclusion we postulate that after filling in the
missing values the score for Virtuoso will be of the same order as Blazegraph, so
definitely > 1000!

e GraphX s one of the possible Spark solution which gets a very high ranking. Again
here we expect some bias, Virtuoso is definitely more mature and suitable as an RDF
store.

http://dsg.uwaterloo.ca/watdiv/
http://www.ldbcouncil.org/
http://project-hobbit.eu/
https://lists.wikimedia.org/pipermail/wikidata-tech/2015-March/000740.html
https://lists.wikimedia.org/pipermail/wikidata-tech/2015-March/000740.html

e Neo4J and Titan are the highest scoring native databases. The fact that they have no
native support for RDF and SPARQL would make it definitely a less viable option
than Virtuoso and Blazegraph.

Also this wiki provides a lot of details of the features of many different stores allowing
Europeana to take these into consideration.

10000
m OWLIM-SE
m Virtuoso
1000 -
g 100 -
10 -
1 -
N Y\ %) $ © A b Oy Q
@"e & o«a"e o'a"q' da""' o'a"e da"e Dfa"e & (:b‘,é\

Figure 1. Virtuoso shows the best performance in a study on life science datasets.

[11Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knowledge base systems. Web Semantics: Science, Services
and Agents on the World Wide Web, 3(2):158-182, 2005.

[2] C. Bizer and A. Schultz. The Berlin SPARQL Benchmark. International Journal on Semantic Web and Information Systems
(IJSWIS), 5(2):1-24, 2009.

[3] M. Morsey, J. Lehmann, S. Auer, and A.-C. Ngonga Ngomo. DBpedia SPARQL benchmark—performance assessment with
real queries on real data. The Semantic Web—-ISWC 2011, pages 454-469, 2011.

[4] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. SP2Bench: a SPARQL performance benchmark. In Data Engineering,
2009. ICDE’09. IEEE 25th International Conference on, pages 222-233. |IEEE, 2009.

[5] G. Alug, O. Hartig, M. T. Ozsu, and K. Daudjee. Diversified stress testing of RDF data management systems. In The
Semantic Web—-ISWC 2014, pages 197-212. Springer, 2014.

[6] H. Wu, T. Fujiwara, Y. Yamamoto, J. Bolleman, and A. Yamaguchi. BioBenchmark Toyama 2012: an evaluation of the
performance of triple stores on biological data. Journal of biomedical semantics, 5(1):1, 2014.

https://wiki.nci.nih.gov/display/EVS/Triple+Store+Capability+Research+and+Analysis

4 Infrastructure configuration

To set up the stores two approaches can be followed:
e |Installation based on the online documentation
e |[nstallation based on dockerfiles

The docker file has the following advantages/disadvantages:

Maintained by an external partners + automatically stays up to date
Used and tested by a larger audience

Single command setup

A docker file is in fact an installation recipe

+ + + +

- No enterprise guarantees

Docker images can be found on Docker Hub. Docker is a virtualization approach so the
containers can be deployed independent of the OS. Details on the installation of docker are
on the wiki page. the scripted version is found under */prereq’.

Some containers require additional software during the setup process. Scripts will be
provided via a github repository. The github repository contains a very broad set of
wikipedia pages. The starting location of which can be found here.

4.1 Preparation
4.1.1 Triples dataset

The initial data offered by Europeana consisted of a dump of their current Spargl endpoint.
This endpoint was using Ontotext GraphDB as a data management system. Since this
format cannot be used by other triple stores Europeana provided a dataset in RDF/XML
format and in RDF/Turtle format. The latter is format is preferred since it is less verbose and
more easy to parse and apply postprocessing. The RDF/XML dataset was used in WP1 to
create a set of HDT files and was also used further on in the project due to the fact that the
RDF/Turtle dataset still has a number of data quality issues (which are being noted for
discussion with Europeana's group working on data quality). Due to the aforementioned
advantages of RDF/Turtle we recommend that Europeana tries to correct these issues for
future use.

https://hub.docker.com/explore/
https://github.com/europeana/europeana-triplestore-setups/wiki/Prerequisites
https://github.com/europeana/europeana-triplestore-setups
https://github.com/europeana/europeana-triplestore-setups/wiki

4.1.2 HDT compression

In WP1 the RDF/XML dataset was converted to HDT. The same process was repeated
starting from the RDF/Turtle dump. As a preprocessing step the turtle files in directory
‘dump_30_6_2016" where grouped per prefix and concatenated. (scripts available, though
trivial). This preprocessing phase revealed a first issue with the RDF/Turtle dataset: files with
prefix 3 to 9 and 45 are not present in the RDF/Turtle dump!

To create HDT files from both RDF/XML or RDF/Turtle we recommend using the rfdhdt
docker container. Creating an HDT from a turtle file is as simple as:

sudo docker run -it --rm -v $(pwd):/data rfdhdt/hdt-cpp rdf2hdt -f turtle /data/_2.ttl
/data/_2.hdt

The HDT compression algorithm is very sensitive to anomalies in the dataset. Unfortunately
the software doesn't just skip malformed triples, it terminates the conversion upon error. In
the file HDTCompression.xlsx in the tab “sidetoside’ the number of triples per file are
compared between the conversion of RDF/XML to HDT and the conversion starting from the
Turtle dump. The regular conversion from RDF/XML has 1.93 billion triples while the
conversion from RDF/Turtle only has 0.75 billion triples. Therefore we chose to work with the
HDT files of WP1. (actual errors can be found in HDTCompression.xlsx, first tab)

Note that the number of triples in an HDT file can be seen by simply opening the HDT file in
a text editor, the number of triples is one line 3. Differences in the number of successfully
generated triples can be seen in Figure 2.

An important reason we recommend the cleanup of the RDF/Turtle dump is the big
performance difference for handling these two data types. The conversion to HDT from
RDF/XML takes approximately 18 hours while the conversion from RDF/Turtle is expected
to take 217 minutes or 3 hours 47 minutes (calculation in HDTCompression.xIsx, first tab).

https://hub.docker.com/r/rfdhdt/hdt-cpp/
https://hub.docker.com/r/rfdhdt/hdt-cpp/
https://github.com/europeana/europeana-triplestore-setups/blob/master/datapreparation/triples/HDTCompression.xlsx

g1e7, | : : ' : ;- - #Triples per prefix

5 :
4.
3
2
1
0
FEIX
00 , Percentage of triples compressed per prefix for Turtle dump
80 - . _
GO ahai i
40-
) | I I |||
0' l - -
ANMSNONODOOANMTINONONOANMINONOD O N M:
Hed A A A A A A AANNNNANNNNNNMM MM
Preflx

Figure 2: Number of triples per prefix starting from RDF/XML (top) and RDF/Turtle (bottom). RDF/Turtle has too
many errors to be an acceptable source for HDT generation.

4.1.3 Query Validation

The Europeana specific queries where provided via a google document. A simple
copy-paste of the queries resulted in a set of errors thrown by the benchmarker client. (table
is in the wiki page, screenshot below). Therefore we chose to use SPARQLer Query
Validator to validate and correct the queries.

https://docs.google.com/document/d/1B5CrCKb_3BAAWLQKTfbYZtgPbB0El4TaL2TQcg189ME/edit
http://sparql.org/query-validator.html
http://sparql.org/query-validator.html

Table of errors:
Sparq| file

Query324.spargl

Query3211.sparqg|

Qiery331b.sparg|

Query42.sparq|

Query51.sparql

Query53.sparqgl

Error

Line 17, column 10: Unresolved
prefixed name: dcterms:spatial

Encountered " "?Proxy "" at line

17, column 3.

Encountered or signs at line 20,
column 46

nn

Encountered " "?property "" at line

18, column 10.

Line 16, column 18: Unresoclved
prefixed name: hitp:

Line 16, column 21: Unresolved
prefixed name: dec-term:issued

After validation and correction the queries are stored in
benchmarker/europeana_queries DDWParsed/.

4.2 Virtuoso Open Source Edition

4.2.1 Installation & Configuration

Docker image at https://hub.docker.com/r/tenforce/virtuoso/

Fix

replace dcterms: by dct: (wrong
prefix)

Added a .’ after first triple in BGP
Probably invalid syntax with or
sign, rewrote query with UNION

clauses

() for FILTER

<> around url

prefix de-term: =» dct:

Details on installation can also be found in the virtuoso wiki page we created.

Container can be installed with the following command:

e sudo docker run --name virtuoso -p 8890:8890 -p 1111:1111 -e
DBA_PASSWORD=dba -e SPARQL_UPDATE=true -e
DEFAULT_GRAPH=http://lwww.example.com/my-graph -v

Ihome/ddewitte/data:/data -d tenforce/virtuoso

o sudo docker start/stop virtuoso can be used to start or shutdown the machine
while preserving state.

This creates a shared folder between the docker container and the host. In the host system

the directory /home/ddewitte/data corresponds to the internal /data directory. Ports 8890 and

1111 are the SPARQL port and the ISQL port respectively. The other parameters are self
explanatory. Note that modifying the port mappings is a simple as modifying the left hand
side of the expression: -p outer_port:container_port

https://hub.docker.com/r/tenforce/virtuoso/
https://github.com/europeana/europeana-triplestore-setups/wiki/Virtuoso-Installation

Alternatively Virtuoso can be build from source as described in the documentation:
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VOSBuild

The Virtuoso container automatically starts Virtuoso. The modify its configuration the
container must be stopped. In the ~/data folder a config file named virtuoso.ini can be
modified to tune Virtuoso (the file used in the benchmarks can be found in
/virtuoso/setup/virtuoso.ini). The following set of parameters should be modified:
e Add the /data folder to the list of allowed dirs, to allow data import from this directory
o DirsAllowed = ., /usr/local/virtuoso-opensource/share/virtuoso/vad, /data

e Adjust the Virtuoso parameters to take advantage of your server hardware (values
extrapolated for 128 GB system, for smaller system just multiply/divide):
o NumberOfBuffers = 10900000
o MaxDirtyBuffers = 8000000
e Virtuoso can be optimized to automatically limit the number of results per query or
the (estimated) query execution time. These are standard settings which should be
adjusted for benchmarking:
o ResultSetMaxRows = 1000000000
o MaxQueryCostEstimationTime = 3600
o MaxQueryExecutionTime = 3600

Note: The virtuoso binaries can be found at /usr/local/virtuoso-opensource/bin, the
database files, logs,... are in /usr/local/virtuoso-opensource/var/lib/virtuoso/db
e virtuoso.log: is the starting point for troubleshooting

More information on performance tuning can be found in the Virtuoso documentation:
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtRDFPerformanceTuning

Note after benchmark evaluation: The number of results per query seems to experience
an upper threshold in the benchmark. After consulting with OpenLink they recommend
commenting out ResultSetMaxRows, they also advise against setting the maximal timings.

4.2.3 Virtuoso Bulk loader

For large datasets such as the Europeana dataset triples are imported in bulk to avoid
transactional overhead. Virtuoso has a bulk loader which can be run as follows (from
/usr/local/virtuoso-opensource/)

e sudo bin/isql-v 1111 dba dba exec="Id_dir(‘/data’, ‘*.ttl", 'http://europeana.eu/");"
e sudo bin/isql-v 1111 dba dba exec="rdf_loader_run();"

To investigate the status of the bulk loading process you can check the state:

e sudo bin/isql-v 1111 dba dba exec="select * from DB.DBA.load_list;"

http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VOSBuild
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtRDFPerformanceTuning
http://europeana.eu/

Il_state 1 means ‘in progress’, 0 is not started, 2 is finished. Il_start and Il_stop indicate the
start and end times of the bulk loader II_error contains potential error messages.

More information on the Virtuoso Bulk loading process can be found in the documentation:
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtBulkRDFLoader

In /virtuoso/setup/ there’s a script "loadTriplesPer1000.sh™ which was used to load the
RDF/Turtle dump. The bulk loader didn’t have any problems loading the data and didn’t
report any issues, this makes the Virtuoso Bulk loader the most robust of the systems tested.

4.2.4 Virtuoso Sparql Endpoint

The Virtuoso SPARQL endpoint can be reached via
http://benchmark3.eanadev.org:8890/sparq|,

4.3 Blazegraph

For Blazegraph no docker images were available for the newer versions of the software.
Therefore a docker file was created and committed to the original docker blazegraph
repository on github (version 2.1.2)

The wiki page contains details on how to modify the server configuration properties, run the
bulk loader and start Blazegraph.

4 4 Fuseki with HDT back-end

The rdf-hdt homepage describes the integration of jena and fuseki, unfortunately this
document is not up to date (broken links). The best source is the github repo, more
specifically the hdt-fuseki page: https://github.com/rdfhdt/hdt-java/tree/master/hdt-fuseki

The Fuseki wiki page we provide contains all commands to setup Fuseki. These commands
are grouped in the following files:
e installFuseki.sh: install prerequisites (java, maven), download latest github
source and build using maven
e /bin/hdtEndpoint.sh: script to actually start the server with modified memory
settings: INDEX _MEM=32g and SERVER _MEM=64¢g
e |oadDataAndStartFuseki.sh: Script used to launch fuseki while logging to
fuseki.log. This script uses a custom config file. Note that when the .index
files are not present this script will take some time to perform the mapping,
this is considered part of the bulk loading process. With these files present
starting fuseki only takes about a minute.

http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtBulkRDFLoader
http://benchmark3.eanadev.org:8890/sparql
https://github.com/laurensdv/docker-blazegraph/tree/master/2.1.2
https://github.com/laurensdv/docker-blazegraph/tree/master/2.1.2
https://github.com/europeana/europeana-triplestore-setups/wiki/Blazegraph-Installation
http://www.rdfhdt.org/manual-of-hdt-integration-with-jena/
https://github.com/rdfhdt/hdt-java/tree/master/hdt-fuseki
https://github.com/rdfhdt/hdt-java/tree/master/hdt-fuseki

e Fuseki_europeana_config.ttl: custom config file to load a set of HDT files into
fuseki

Some details about the config file. There is a standard file in the hdt-java repository which
we modified:
e Main modification is to use a UnionModel which contains all hdt files and use this
model as the default graph (only one default graph can be chosen and dropping the
FROM clause in the SPARQL queries has the effect of only query the default graph)
e Using the UnionModel introduced an exception in the loading phase:
org.apache.jena.assembler.exceptions.AmbiguousSpecificTypeException: This can
be resolved by specifying that a HDT graph is in fact a model by adding the line:

hdt:HDTGraph rdfs:subClassOf ja:Model .

to the configuration file.

4.5 Neo4dJ with Spargl plugin

The Neo4J SPARQL plugin was considered an additional store for benchmarking but was
left out due to time limitations. It's also the least likely to be adopted due to the fact that the
plugin is not frequently updated.

4.6 Sparqgl Query Benchmarker

On the client[1-5] nodes SPARQL query benchmarker was installed, this is an open source
project developed by Rob Vesse. The prerequisites and run details can be found in the
Benchmarker wiki page.

https://github.com/rdfhdt/hdt-java/blob/master/hdt-fuseki/fuseki_example.ttl
http://stackoverflow.com/questions/26121947/query-multiple-tdb-datasets
https://mail-archives.apache.org/mod_mbox/jena-users/201605.mbox/%3C5738DFDB.8080200@apache.org%3E
https://mail-archives.apache.org/mod_mbox/jena-users/201605.mbox/%3C5738DFDB.8080200@apache.org%3E
https://github.com/niclashoyer/neo4j-sparql-extension
https://github.com/europeana/europeana-triplestore-setups/wiki/Benchmark-Client

Under input specifics the actual commands issued are shown. As can be found in the wiki
the benchmark client can be run as follows:

/spargl-query-bm-2.1.08/cmd/benchmark

O -m ./querylListEuropeana.txt

O -r 18
O -p 2
O w3
o

-gq <http://sparglendpoint:port=
G -p8

2 -c benchmarkerOutputVirtuoso.cswv
© --log-file runnerVirtuoso.log

© >> outputVirtuosoBenchmark.log

Meaning of parameters:
e m: query list file contains the paths to the files with the queries (one query per file!)
r: number of query mix runs
o: number of outliers (omitted in the calculation of averages)
w: number of warmup runs
q: url of spargl endpoint
p: parallel threads
c: resultsfile (csv)

Login credentials are sometimes required and can be supplied via the following extra flags:
e --username dba
e --password dba

4.7 Issue Tracker
4.7.1 Networking issues

Docker containers did refuse to restart. The error was the following:
e iptables failed: iptables --wait -t nat -A DOCKER -p tcp -d 0/0 --dport 8890 -j DNAT
--to-destination 172.17.0.2:8890 ! -i dockerO: iptables: No chain/target/match by that
name. (exit status 1).
According to Christos the iptables service is governed by service ferm. Restarting ferm did
not result in the docker container to successfully restart but restarting the docker service
(after stopping all containers) turned out to be the way to go:
e sudo systemctl restart docker

4.7.2 URI exceptions

ERROR: Banner.java:160: Uncaught exception in thread
java.lang.RuntimeException: Could not parse file: /data_mount/data/dump.ttl
at com.bigdata.rdf.store.Dataloader.loadFiles(Dataloader.java:1378)
at com.bigdats.rdf.store.Dataloader.main(Dataloader.java:2085)
Caused by: org.openrdf.rio.ROFParseException: IRI included an unencoded space: '32' [line 2228046]
at org.openrdf.rio.helpers.RDFParserHelper.reportFatalError(RDFParserHelper.java:441)
at org.openrdf.rio.helpers.RDFParserBase. reportFatalError{RDFParserBase.java:671)
at org.openrdf.rio.turtle.TurtleParser. reportFatalError(TurtleParser.java:1306)
at org.openrdf.rio.turtle.TurtleParser.parselURI(TurtleParser.java:947)
at org.openrdf.rio.turtle.TurtleParser.parsaValue(TurtleParser.java:6l4)
at org.openrdf.rio.turtle.TurtleParser.parselbject(TurtleParser.java:502)
at org.openrdf.rio.turtle.TurtleParser.parselbjectlist{TurtleParser.java:428)
at org.openrdf.rio.turtle.TurtleParser.parsePredicatelbjectlList(TurtleParser.java:421)
at org.openrdf.rio.turtle.TurtleParser.parseTriples(TurtleParsar.java:385)
at org.openrdf.rio.turtle.TurtleParser.parseStatement(TurtleParser.java:261)
at org.openrdf.ric.turtle.TurtleParser.parse(TurtleParser.java:216)
at com.bigdata.rdf.rio.BasicRiolLoader.loadRdfZ(BasicRioloader.java:236)
at com.bigdata.rdf.rio.BasicRioloader.loadRdf(BasicRioloader.java:l76)
at com.bigdata.rdf.store.Dataloader.loadData4_ParserErrors Mot Trapped(Dataloader.java:1595)
at com.bigdata.rdf.store.Dataloader.loadFiles(Dataloader.java:1359)
Figure 2: Triple stores are experiencing problems in loading the turtle dump generated by Europeana. Stacktrace

of Blazegraph.

Both Blazegraph and Virtuoso failed to complete the bulk loading process so far. Blazegraph
is more explicit in highlighting the cause of the failure as can be seen in figure 2. Doing a
status check in Virtuoso revealed that also there the bulk loading process fails due to a uri
problem, although the actual error is not very comprehensive, from the virtuoso.log:

e 13:25:22 PL LOG: File /data//dump.ttl error 37000 SP029: TURTLE RDF loader, line
101334038: syntax error processed pending to here.

Fuseki can work with HDT files. The HDT compression software did manage to create the
HDT files from the RDF/XML dataset, creating HDT files from the updated RDF/Turtle
although recommended didn’t work very well due to data quality issues, this will be
discussed later on. One of the issues that Europeana tried to tackle was to replace all
spaces in URIs by %20. Unfortunately this in turn introduced unexpected replacements
which had to be corrected.

5. Benchmark Results

In a research paper by our lab a number of closed source solutions were compared on an
artificial benchmark (Watdiv). We’ll add these results here to give additional perspective. On
top of that we’'ll provide some results on Europeana specific queries and run on Europeana
hardware.

5.1 Results on artificial datasets (outside project)

In a recent paper published by our lab and presented at SIGMOD 2016 a number of closed
source triple stores were tested on Cloud commodity hardware. Since Virtuoso Open Source
edition and Blazegraph are part of this research effort we also show this results here.

To compare the different storage solution we compare the runtime distributions.

10°

| | -~
== = Rl

10 ! ! j—

! 55%
T
' 8

i

AMTDE
=00 - u_

10°
Blazegraph ESI ESII Virtuoso Blazegraph ESI ESlI Virtuoso Blazegraph ESI ESlI Virtuoso

Runtime distributions (10M) Runtime distributions (100M) Runtime distributions (1000M)

107

10

Figure 4: Runtime distribution for different triple stores

These results are obtained by running the triple stores with default configuration on 32 GB
servers. Especially this amount of RAM proves problematic for most triple stores, except for
Virtuoso. Important nonetheless is the fact that Blazegraph is definitely one of the best triple
stores out there. In later benchmarking efforts the gap was slightly narrowed in setups with
more RAM. On the other hand performance difference for a full query mix is mainly
determined by the tails of the distribution making Virtuoso excel by an order of magnitude on
the Watdiv benchmarks.

In order to better predict the performance giving a specific query mix it is instructive to
classify the queries according to their structural properties. In figure 4 results are shown for 4
query template types: linear queries, star-shaped queries, snowflakes and more complex
queries.

http://ruben.verborgh.org/publications/dewitte_sbd_2016/

B Blazegraph

3 Runtime Average per query type
N ESI
B ESH

=3 .

102: mm Virtuoso

101%5

10 3) 4 I &

o

w

template_type
Figure 5: Runtime for different query templates for the different triple stores. L = Linear query, F = Snowflake
query, S = star shaped query, C = complex queries. More details on Watdiv site

This exercise can be repeated with different classification schemes for example taking into
account the different SPARQL keywords used in the queries.

5.2 Results on Europeana triples and queries
5.2.1 Time measurements

In the postprocessing directory of the github directory a number of csv files is collected with
analysis on the benchmark data. The content of these csv files is visualized in
EuropeanaPostprocessing.x:

e .py: python script

e .ipynb: ipython notebook file (open using ipython notebook filename)

e _html: an export of the notebook file

Using this notebook Europeana can very easily reproduce the results of the benchmark
project but on top of that also run additional tests with new queries and even new triple

stores.

Below we’ll give a summary of the results of the notebook:

http://dsg.uwaterloo.ca/watdiv/basic-testing.shtml

Fuseki_xml-

Blazegraph-

Virtuoso-

0 10000 20000 30000 40000
Figure 6: Load times for the different triple stores

In figure 5 we have a look at the load times for the different triple stores. Since Fuseki starts
(just as the LDF system in WP 1) from a set of HDT files, the creation of these has to be
taken into account. Creating HDT files from RDF/Turtle makes a huge difference in the
overall load process. The X-axis is in seconds, with Virtuoso loading approximately twice as
fast as Blazegraph. Fuseki load time also consists of building index files of the HDT data,
this takes approximately one hour and is shown in blue.

As the number of queries is rather low (50) we chose to visualize their runtimes in a line plot
instead of using box plots. Figure 7 shows the runtime for the 3 different solutions on a log
scaled plot. Note that the timeout of SPARQL benchmarker was set on 300 seconds, it might
make sense to rerun the experiments with higher timeouts. On the other hand, as the plot
shows Virtuoso doesn’t experience any timeouts:

Timeouts:
e Virtuoso: no timeouts
e Blazegraph: 26 timeouts
e Fuseki: 45 timeouts

The actual runtimes of Fuseki are somewhat reflected in fuseki.log but are often in the order
of +1000 seconds. This results is probably caused by the fact that the timeout only occurs at
the client side while the server keeps processing the queries. We assume that this causes
the results to be worse for Fuseki, on the other hand it is a shortcoming of the Fuseki server
that it doesn’t respond to the client canceling the query.

The good results of Virtuoso will be somewhat put in perspective if we analyze the
correctness of the queries later on!

Runtimes for: Virtuoso

1,_._..4-1 pee - - - -0 -~ g 0 =
L}

Runtimes for: Blazegraph
F =8 =&, ..._._._.'_.__'__.'—'._._. ’--.—.—.—.—.—.—
S

e -e RuntimeBlazegraph

Runtimes for: FusekiHDT

i—-'-"-'---—-‘-—---—.~--'-—."v.--.--.-_.,-.-'.-...d.—.h.-._.-_.-.—".——O-'.-'i“f".-.—.—.—l-—ﬁ—

102 e -e RuntimeFusekiHDT

10’

10°

10

10'20 10 20 30

Figure 7: Runtimes for the different triple stores on 50 queries provided by Europeana. From left to right the
queries are in the same order as the google document, but this can be verified in the csv files of the different
stores.

Runtimes in a box plot are shown in figure 8.

3 Runtime distributions per triple store

10

102

RuntimeVirtuoso RuntimeBlazegraph

Figure 7: Runtime distribution Virtuoso versus Blazegraph. If we focus on the median results Virtuoso is
approximately 30 times faster than Blazegraph. If we add all runtimes together Virtuoso requires 735 seconds to
run all 50 queries, Blazegraph needs 9333 seconds which is still a factor 12.7

5.2.2 Query accuracy

The notebooks also provide with 2 visualizations on the number of errors per query and also
on the number of results per query. Since the visualization are large we’ll stick to the
observations in this document.

Important result of counting the number of results per query is the fact that for the queries
with many results Virtuoso seems to limit the number of results to 1048576 per query.
We contacted Open Link Support, removing the ResultSetMaxRows parameter should
address this problem (although our value was set to 1 billion). This is worth further
investigation by Europeana as it makes it easier for Virtuoso to complete the queries without
getting a timeout.

If the actual number of results per query are studied (numberOfResultsPerQuery.csv) we
can see that the number is sometimes close but not identical. We hypothesize that this is
due to the problems in the loading phase:
e Fuseki started from the RDF/XML dataset and has 1.9 billion triples
e Virtuoso and Blazegraph started from RDF/Triple dataset but for Blazegraph
a number of problematic files were omitted:
o Virtuoso COUNT(*): 1592 172 574 triples

o Blazegraph COUNT(*): 1 585 090 298 triples
Studying the percentage of errors per query shows that the results are rather consistent:
apart from a small number of exceptions, failure to answer a query is generally consistent
across multiple runs.
Not mentioned before is that Virtuoso actually failed to process the queries of section 5
(Query51, 52 and 53) while Blazegraph had no problems with these queries. In the
performance measurement these errors are not registered as timeouts but as zero runtime.

5.2.3. Run time versus Response time

If we compare Blazegraph and Virtuoso on final parameter to study is the distinction
between query runtime and query response time. In the case of Blazegraph fitting a line to
the curve mainly follows the X-axis, meaning that Blazegraph is very soothed for providing
(partial) results as soon as they become available while the curve for Virtuoso is actually a
bisector showing that Virtuoso doesn’t support streaming partial results. But since Virtuoso is
also very fast at processing the full query this shouldn’t be weighed too heavily in the
evaluation.

Runtime vs Responsetime Virtuoso

Runtime
Runtime vs Responsetime Blazegraph

& 50 ®
o GI0D O @ ® ® O

Runtime

6. Overview of deliverables for Europeana

Deliverables for Europeana are made available at a private github repository owned by
Europeana.

In this github repository there’s a directory per component:

https://github.com/europeana/europeana-triplestore-setups

benchmarker: installation files for SPARQL Query benchmarker

blazegraph, fuseki, virtuoso: installation and measurements per store

prereq: docker installation scripts

datapreparation: query validation and HDT generation scripts

postprocessing: contains scripts for visualization and analysis of the results of the
benchmarking

The most useful deliverable is the set of detailed wiki pages:
e In principle the same names are chosen for the wiki pages as for the source code
directories
e For the triple stores there is a page on setup in data loading and a page on
measurements

7. Recommendations for Europeana

Based on prior experience: Virtuoso and Blazegraph are the most promising players. Given
sufficient memory the stores have a performance which is in the same range, although
Virtuoso in general is faster. When reducing the available memory Virtuoso is the only store
that can guarantee a decent performance.

Based on the specific results for the Europeana dataset and queries it seems that Virtuoso is
outperforming Blazegraph still by an order of magnitude. Some results might change as a
consequence of some anomalies detected in the benchmark (such as the max #results) and
it might be interesting to rerun the benchmark with a higher timeout parameters and perhaps
only single threaded but the conclusion of this benchmark is expected to hold.

Based on past experiences with the Triple store vendors we can state that both companies
are helpful w.r.t. offering support even when no commercial license is acquired.

With respect to the data format we strongly encourage to improve the data quality of the
RDF/Turtle data as this data format has clear advantages as opposed to RDF/XML in terms
of performance and preprocessing.

Finally it has become clear that stores with a commercial offering vastly outperform purely
open source solutions such as Jena Fuseki. Although this offering might be of some value in
further evaluation the LDF system in WP1.

As a final note we’d also like to mention that evaluating the runtime of queries in a triple
store is not the only way to benchmark systems and Europeana should definitely weigh in
different aspects, such as reasoning capabilities, fulltext search support,... For this matter
having a look at the documents provided in section 3.2 is recommended. We do advise
against relying on the score provided by Wikidata since the rating of Virtuoso doesn’t seem
to be the result of thorough testing and analysis.

https://github.com/europeana/europeana-triplestore-setups/wiki

